Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification
نویسندگان
چکیده
BACKGROUND Short rotation coppice willow is a potential lignocellulosic feedstock in the United Kingdom and elsewhere; however, research on optimising willow specifically for bioethanol production has started developing only recently. We have used the feedstock Salix viminalis × Salix schwerinii cultivar 'Olof' in a three-month pot experiment with the aim of modifying cell wall composition and structure within the stem to the benefit of bioethanol production. Trees were treated for 26 or 43 days with tension wood induction and/or with an application of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile that is specific to secondary cell walls. Reaction wood (tension and opposite wood) was isolated from material that had received the 43-day tension wood induction treatment. RESULTS Glucan content, lignin content and enzymatically released glucose were assayed. All measured parameters were altered without loss of total stem biomass yield, indicating that enzymatic saccharification yield can be enhanced by both alterations to cell wall structure and alterations to absolute contents of either glucan or lignin. CONCLUSIONS Final glucose yields can be improved by the induction of tension wood without a detrimental impact on biomass yield. The increase in glucan accessibility to cell wall degrading enzymes could help contribute to reducing the energy and environmental impacts of the lignocellulosic bioethanol production process.
منابع مشابه
Reaction wood – a key cause of variation in cell wall recalcitrance in willow
UNLABELLED BACKGROUND The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was conside...
متن کاملFive willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance
Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured...
متن کاملVariability in wood properties of promising willow clones
The objective of the article is to investigate the variability in growth and wood properties of the willow clones. The growth and wood traits of four year old 21 clones willow clones were investigated. Analysis of variance showed that willow clones differed significantly for all the studied growth and wood traits. Among the growth parameters the maximum heritability value was shown by height wh...
متن کاملUsing Arabidopsis to study shoot branching in biomass willow.
The success of the short-rotation coppice system in biomass willow (Salix spp.) relies on the activity of the shoot-producing meristems found on the coppice stool. However, the regulation of the activity of these meristems is poorly understood. In contrast, our knowledge of the mechanisms behind axillary meristem regulation in Arabidopsis (Arabidopsis thaliana) has grown rapidly in the past few...
متن کاملEvaluating ecosystem processes in willow short rotation coppice bioenergy plantations
Despite a growing body of research linking bioenergy cultivation to changing patterns of biodiversity, there has been remarkably little interest in how bioenergy plantations affect key ecosystem processes underpinning important ecosystem services. In this study, we compare how the processes of predation by ground arthropods and litter decomposition varied between Short Rotation Coppice (SRC) wi...
متن کامل